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ABSTRACT

We extend Jensen’s Theorem that Souslin’s Hypothesis is consistent with

CH, by showing that the statement Souslin’s Hypothesis holds in any

forcing extension by a measure algebra is consistent with CH. We also

formulate a variation of the principle (∗) (see [AT97], [Tod00]) for closed

sets of ordinals, and show its consistency relative to the appropriate large

cardinal hypothesis. Its consistency with CH would extend Silver’s The-

orem that, assuming the existence of an inaccessible cardinal, the failure

of Kurepa’s Hypothesis is consistent with CH, by its implication that

the statement Kurepa’s Hypothesis fails in any forcing extension by a

measure algebra is consistent with CH.

1. Introduction

Souslin’s Hypothesis that the real line is, up to an isomorphism, the only totally

ordered ccc continuum has played an important role in the development of

set theory. Its independence from the usual Zermelo–Frankel axioms of set

theory, as established by Solovay and Tennenbaum (see [ST71]), led to the

development of an even more important additional axiom: Martin’s Axiom. The

independence of SH from CH was considerably more difficult and was established

by Jensen several years after the Solovay and Tennenbaum result (see [DJ74]).

In [Lav87] Laver extends the results of Solovay and Tennenbaum by showing

that not only does MAℵ1
imply SH, but it implies RSH where RSH is the
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statement there are no Souslin trees in any forcing extension by a measure

algebra, thus establishing the independence of SH from the classical hypothesis

that the Lebesgue measure can be extended to all sets of reals. In this paper we

establish the corresponding version of Jensen’s result; in other words we prove

that for a suitable model of CH, Souslin’s Hypothesis remains true in any forcing

extension by a measure algebra, thus establishing the independence of SH from

statements like b = ℵ1 < 
. More precisely, we show that that the principle (∗)

of Abraham–Todorčević ([AT97], [Tod00]) implies that SH holds in any forcing

extension by a measure algebra. This gives a negative answer to a question of

Laver (private communication): whether extending a model of CH by a random

real adds a Souslin tree.

The principle (∗), in its most general (and optimal) form (see [Tod00]), is:

(∗) For every P -ideal I of countable subsets of some set S, either

(1) there is an uncountable A ⊆ S such that A[ℵ] ⊆ I,

or

(2) S can be decomposed into countably many sets orthogonal to I

(where A[ℵ] denotes the set of all countably infinite subsets of A). Note that in

the original version of (∗), S = ω1, and this is all we use in the consideration of

Souslin trees in the forcing extension by some measure algebra. Let us interject

here to recall the relevant definitions. An ideal on a set S is a downwards closed

family of subsets of S which is closed under pairwise unions. We always assume

that an ideal on S consists only of countable subsets of S, and moreover that it

includes all finite subsets of S. A P -ideal is an ideal I where every countable

subset of I has an upper ⊆∗-bound in I. A subset X of S is orthogonal to a

family F of subsets of S, if X ∩ F is finite for all F ∈ F .

We shall in fact prove corresponding results for the stronger statement SH+:

all Aronszajn trees are special which was originally deduced from MAℵ1
by

Baumgartner, Malitz and Reinhardt [BMR70]. Laver [Lav87], in fact, proves

that MAℵ1
implies RSH+ where RSH+ is the statement all Aronszajn trees are

special in any forcing extension by a measure algebra.

Since Jensen [DJ74], in fact, proves that SH+ is consistent with CH, it is

natural to try and strengthen this to the statement that RSH+ is consistent

with CH. Indeed this is what we attempt to do, and moreover we apply these

ideas to randomize the notion of a square sequence. However, for this we need

a variation of (∗) which is introduced in Section 2 as (⋆c); and the proof of the

consistency of this variation with CH is ongoing work of the author (see Section

2.1.1 for further discussion).



Vol. 157, 2007 RANDOM TREES UNDER CH 125

The independence of Kurepa’s Hypothesis that there exists a Kurepa tree was

first proved by Silver in [Sil71], where it is moreover shown that assuming the

existence of an inaccessible cardinal ¬KH is consistent with GCH. (He also

showed that the inaccessible is necessary for ¬KH.) In [Dev78] and [Dev80]

Devlin extends Silver’s result by constructing a model of ¬KH + SH + GCH

from an inaccessible cardinal. In [Dev83], is a result of Baumgartner that PFA:

the Proper Forcing Axiom, a strengthening of MAℵ1
, implies that every tree

of size and height ω1 is essentially special, and thus in particular, PFA implies

¬KH− where KH− is the weakening of KH which states that there exists an

ω1-tree which is not essentially special. In an unpublished piece of work [Bau],

Baumgartner showed further that PFA implies that every tree of size and height

ω1 is essentially special in any extension by a measure algebra, and in particular,

PFA implies ¬RKH− where RKH− is the random version of the statement KH−.

In this note we extend Devlin’s result (and hence Silver’s result) along the lines of

Baumgartner, by proving that assuming the existence of an inaccessible cardinal

the conjunction of the statements RSH+ and ¬RKH− is consistent with CH,

thereby giving a positive answer to a question of Baumgartner. However, this

once again is dependent upon proving the consistency of (⋆c) with CH.

Finally, we comment on the choice to force with a measure algebra rather

than any of the other algebras. Recall that it is a Theorem of Shelah [She84]

that SH fails in any forcing extension by one Cohen real. A simpler and elegant

construction of a Souslin tree from a Cohen real is given by Todorčević in

[Tod87]. Moreover, as shown by Carlson and Laver [CL89], if V satisfies PFA

and s is a Sacks real over V , then V [s] satisfies MAℵ1
(and in particular SH);

however, adding a Sacks real to a model of CH introduces a diamond sequence,

and in particular a Souslin tree; hence, Sacks reals and random reals differ in

this regard. This clearly gives further motivation for Laver’s question above.

Furthermore, by random forcing we obtain new independence results of SH

from various cardinal invariants (see [vD84] for an introduction to cardinal in-

variants). For example, all of the previously known models of SH satisfied either

CH or b > ℵ1. By applying our results to a measure algebra of weight at least

ℵ2 we obtain the following Corollary∗:

Corollary 1.1: SH is independent of d = ℵ1 < 
.
Acknowledgements: The author wishes to acknowledge Stevo Todorčević

* Added in proof. Since this paper was first submitted, the same result was ob-
tained independently by Mildenberger–Shelah [MS03].
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for his helpful suggestions. And the author is extremely grateful to Todd Eis-

worth for pointing out a major error in the previous version of this document.

2. The principle (⋆c)

Our interest in (∗) lies in the fact that it implies certain consequences of PFA—

for example, see one of the main results of this paper: Theorem 3.17—and yet

is consistent with CH (see [AT97], [Tod00], resp.):

Theorem 2.1 (Abraham–Todorčević): (∗) for S = ω1 is relatively consistent

with CH.

Theorem 2.2 (Todorčević): Assuming that the existence of a supercompact

cardinal is consistent, (∗) is consistent with CH.

The principle (⋆c) is a variation of (∗), where “uncountable” is strengthened

to “closed uncountable”, and “countable decomposition” is weakened to “sta-

tionary”:

Definition 2.3:

(⋆c) For any ordinal θ of uncountable cofinality, for every P -ideal I of countable

subsets of θ, either

(1) there is a closed uncountable C ⊆ θ such that C [ℵ] ⊆ I,

or

(2) there is a stationary subset of θ orthogonal to I.

The principle (⋆c) is false without the restriction on the cofinality of θ, but of

course this not a significant restriction. Furthermore, for our application to

random Aronszajn trees we only consider the case θ = ω1. Our interest in the

variation (⋆c) is that it entails consequences of PFA which do not seem to follow

from (∗). For example, (∗) does not appear to imply SH+, while we shall see

that (⋆c) implies SH+ and more.

As with the dichotomy (∗), the dichotomy (⋆c) is a consequence of PFA (The-

orem 4.7). The special case of (⋆c) where θ = ω1 is equiconsistent with ZFC.

However, in [Tod87, (1.10)] (see also [Jen72]), it is shown that if there is no

square sequence on ℵ2 (see Section 3.1) then ℵ2 is weakly compact in L. Hence

by Theorem 3.21, (⋆c) for θ ≤ ω2 requires a weakly compact cardinal. Con-

versely, the restriction of (⋆c) to ω2 is equiconsistent with a weakly compact

cardinal. Moreover, ¬�(ℵ2)+¬�ℵ2
(see Section 3.1) implies that 0♯ exists (see

[Tod02]). Hence by Theorem 3.21 the restriction of (⋆c) to θ ≤ ω3 implies that
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0♯ exists, and therefore has considerably higher consistency strength than (⋆c)

for θ ≤ ω2. By recent results in Inner Model Theory (see [Kan94]) we obtain

as a corollary of Theorem 3.21 that the unrestricted principle (⋆c) has even far

more large cardinal strength.

For the remainder of this section we examine the optimality of (⋆c), i.e. we

consider strengthenings and variations of (⋆c) and prove that they are inconsis-

tent; and, most importantly, we discuss the consistency of (⋆c) with CH.

2.1. Club sequences. The principle (⋆c) is optimal in the sense that in

alternative (⋆c)(1) we cannot strengthen “closed uncountable” to “closed un-

bounded”. A club-guessing sequence on an ordinal θ is a sequence

〈Cα : α < θ, cf(α) = ℵ〉

such that

(a) Cα is an unbounded subset of α of order type ω,

(b) for every closed unbounded C ⊆ θ, there is an α such that Cα ⊆ C.

We provide a proof of the following result of Shelah (see [She94]) for the

reader’s convenience.

Theorem 2.4 (Shelah): There is a club-guessing sequence on ω2.

Proof: Suppose by way of contradiction that there is no such object. We shall

construct closed unbounded sets Eξ ⊆ ω2 and sequences

〈f ξ
α : α ∈ Eξ, cf(α) = ℵ〉

where f ξ
α: ω → α is a nondecreasing cofinal map, by recursion on ξ < ω1, such

that for all α,

(1) f ξ
α(n) ≤ fγ

α(n) for all n < ω, for all γ < ξ,

as described below.

To start the recursion put E0 = ω2 and let 〈f ξ
α〉 be arbitrary. Given ξ < ω1

assume that Eγ and 〈fγ
α〉 have been defined for all γ < ξ. First suppose that ξ

is a successor. By assumption there is a club Dξ ⊆ ω2 such that

(2) ran(f ξ−1
α ) \ {0} * Dξ for all α ∈ Eξ−1 with cf(α) = ℵ.

Choose a club Eξ ⊆ Eξ−1 such that Dξ ∩ α is unbounded in α for all α ∈ Eξ.

Then for each α ∈ Eξ with cf(α) = ℵ, by defining f ξ
α: ω → α by

(3) f ξ
α(n) =

{

max(Dξ ∩ (f ξ−1
α (n) + 1)) if min(Dξ) ≤ f ξ−1

α (n),
0 otherwise,
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we obtain a nondecreasing unbounded function, such that

(4) f ξ
α(n) < f ξ−1

α (n) for some n.

If ξ is a limit, find a club Eξ ⊆
⋂

γ<ξ Eγ such that
⋂

γ<ξ Dγ ∩ α is unbounded

in α for all α ∈ Eξ. Then by (3) and by the way we define fγ
α for γ a limit,

f ξ
α(n) = min

γ<ξ
fγ

α(n) for all n

defines a nondecreasing cofinal function for all α ∈ Eξ with cf(α) = ℵ.

Having completed the recursion, let E =
⋂

ξ<ω1
Eξ. If we pick any

α ∈ E with cf(α) = ℵ, then from (1) and (4) we arrive at the impossibility that

(f ξ+1
α : ξ < ω1) is strictly decreasing with respect to <.

So let C
⇀

be a club-guessing sequence on ω2. We associate an ideal with C
⇀

as

follows:

Definition 2.5: Let IC
⇀ be the ideal of all countable Ω ⊆ ω2 such that

Ω ⊥ C
⇀

,

i.e. Ω ∩ Cα is finite for all α < ω2 of cofinality ℵ.

Lemma 2.6: IC
⇀ is a P -ideal.

Proof: Suppose that {Ωn}∞n=0 ⊆ IC
⇀ . Put Ωω =

⋃∞
n=0 Ωn.

Claim 2.7: For every countable Ω ⊆ ω2, Ω ∩Cα is finite for cocountably many

α.

Proof: Recall that by a limit point of a set S of ordinals, we mean a limit

point, also called an accumulation point, in the topological sense. Thus α is a

limit point of S iff α is a limit ordinal and S∩α is unbounded in α. Notice that

for any α, if Ω ∩ Cα is infinite then α is a limit point of Ω . Since a countable

set has countably many limit points, this proves the Claim.

This proves that C
⇀

is locally countable, i.e. it has a countable trace on

every countable subset of ω2. Hence there exists a Ω ⊆ Ωω which interpolates

the pregap formed by the two countable orthogonal families

{Ωn}
∞
n=0 and {Ω ∩ Cα : cf(α) = ℵ}.

Then Ω ∈ IC
⇀ and we are done.

Alternative (⋆c)(2) fails dramatically for this P -ideal:
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Lemma 2.8: There is no set of order type ω2 orthogonal to IC
⇀ .

Proof: Let Ω be a subset of ω2 with otp(Ω) = ω2. By Claim 2.7 we can find

an enumeration {αi}∞i=0 of the set of all α such that Ω ∩ Cα is infinite. Choose

{ξj}∞j=0 ⊆ Ω recursively so that

(5) ξj /∈
⋃

i<j

Cαi
∪ {ξi} for all j.

Note that the order type of Ω is large enough to make this possible. It is clear

that {ξj} ∈ IC
⇀ as wanted.

On the other hand, it is immediate from the definition of a club-guessing se-

quence that there is no closed unbounded subset of θ all of whose infinite subsets

are in the ideal. Thus alternative (⋆c)(1) cannot be strengthened to an existen-

tial statement about a closed unbounded set, even if the second alternative is

severely weakened.

As a counterpoint, we observe that (⋆c) negates even a rather weak conse-

quence of the diamond principle on ω1:

Theorem 2.9: (⋆c) restricted to ω1 implies that there is no club-guessing se-

quence on ω1.

Proof: Suppose that there is a club-guessing sequence on ω1. Then if we let

J be the analogous ideal to IC
⇀ , the proofs of Lemma 2.6 and Lemma 2.8 tell

us that J is a P -ideal such that no subset of ω1 of order type ω2 is orthogonal

to J . Therefore, since there is no closed unbounded subset C of ω1 such that

C [ℵ] ⊆ J , the principle (⋆c) with θ = ω1 fails.

2.1.1. Consistency of (⋆c) with CH. The consistency of (⋆c) with CH is the

subject of some of the author’s current research. We make the following con-

jecture.

Conjecture 1: The conjunction of CH and (⋆c) for θ = ω1, for θ = ω2 and

for all θ with uncountable cofinality are relatively consistent with ZFC, the

existence of a weakly compact cardinal and the existence of a supercompact

cardinal, respectively.

Let us discuss the difficulties in proving this. The forcing notion in [Tod00]

is shown to be α-proper for all α < ω1. However, Theorem 2.9 states that

the nonexistence of a club-guessing sequence on ω1 is a consequence of (⋆c) for

θ = ω1. And as pointed out by Shelah [She98, pp. 854–855] it is easy to see that
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a club-guessing sequence on ω1 is preserved by any ω-proper poset. Thus if one

begins with a model satisfying GCH with a club-guessing sequence on ω1, and

forces with one of the posets from [Tod00], either for forcing (∗) for θ = ω1 or

for forcing (∗) from a supercompact, then one still has a club-guessing sequence

on ω1 in the extension. In particular, this proves that (∗) does not entail (⋆c).

Since α-properness is used (in conjunction with another property) to ensure

that the iterated forcing does not add reals, we need some other property in

place of α-properness to force (⋆c) without adding reals. Shelah has developed

a property—roughly speaking, finite powers of any intermediate stage of the it-

eration must be proper—precisely for the purpose of destroying all club-guessing

sequences on ω1 without violating CH (see [She98, Ch. XVIII, §2]). However,

this property seems too strong to allow for (⋆c). Indeed, Shelah states there

that it does not even appear possible to specialize all Aronszajn trees with an

iteration satisfying this property.

There is only one other known property, called p-properness, which ensures

that iterations do not add reals (see [She00]). This is a requirement that all

of the posets in the iteration are proper with respect to some fixed parameterp. While there is a natural choice of parameter for a given P -ideal, we did not

see any reason for the existence of a parameter which would work for all ideals

appearing in the iteration. Therefore, it seems necessary to develop new theory

for iterated forcing in order to prove the consistency of (⋆c) with CH.

2.2. Costationary sets. It is easy to see that (⋆c) is also optimal in the

sense that alternative (⋆c)(2) cannot be strengthened by improving “stationary

subset of θ” to “countable decomposition of θ”, or equivalently, the first alter-

native of (∗) cannot be improved by strengthening “uncountable” to “closed

uncountable”. Considering the case θ = ω1, let T ⊆ ω1 be an uncountable

costationary subset of ω1. Define an ideal

(i) IT = T [≤ℵ] ∪ FINω1
,

i.e. IT is the ideal generated by the set of all countable subsets of T . Since

T [≤ℵ] is σ-closed, it follows that IT is a P -ideal. However, there is no closed

uncountable C ⊆ ω1 with C [ℵ] ⊆ IT because T is costationary. And there

is no countable decomposition of ω1 into sets orthogonal to IT because T is

uncountable.

2.3. The dual of (⋆c). The natural dualization of the principle (⋆c) would

be the statement obtained by switching “closed uncountable” with “stationary”.

However, even if θ is restricted to ω1 this statement is inconsistent. Indeed, the
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following variation of (∗) for θ = ω1, which is formally weaker than the dual of

(⋆c), is not consistent with ZFC:

(F) For every P -ideal I of countable subsets of ω1, either

(1) there is an uncountable X ⊆ ω1 such that X [ℵ] ⊆ I,

or

(2) there is a closed unbounded subset of ω1 orthogonal to I.

This is seen by considering the following P -ideal. Let S0 ⊇ S1 ⊇ · · · be a

sequence of stationary subsets of ω1 such that
⋂∞

n=0 Sn = ∅. Let IS
⇀ be the

ideal of all countable subsets Ω of ω1 such that

(ii) Ω ⊆∗ Sn for all n.

Claim 2.10: IS
⇀ is a P -ideal.

Proof: Take Ωn ∈ IS
⇀ (n ∈ N). Then

(6)
∞
⋃

n=0

Ωn ∩ Sn

is a member of IS
⇀ which almost includes every Ωn.

Claim 2.11: There is no uncountable X ⊆ ω1 for which X [ℵ] ⊆ IS
⇀.

Proof: Given such an X we could find a countable set A such that X \ A ⊆
⋂∞

n=0 Sn.

Claim 2.12: There is no closed unbounded set orthogonal to IS
⇀.

Proof: Let C ⊆ ω1 be a club. For each n, choose αn ∈ Sn ∩ C. Then

{αn : n ∈ N} is an infinite subset of C which is in IS
⇀.

2.4. Club variations of (A∗). Let us observe now that (⋆c) is optimal in

the sense that the P -ideal hypothesis is needed. It is even more essential here

than for (∗): The combinatorial principle (A∗) is a dichotomy with precisely the

same alternatives as the principle (∗), the difference being that (A∗) applies to

ℵ1-generated ideals rather than P -ideals. This is a very strong consequence of

PFA that negates CH. Indeed the principle (∗) was derived from (A∗) in order

to obtain a similar principle compatible with CH (see [AT97]). In our context

one may ask whether a variation of (A∗) along the lines of (⋆c) is possible. It is

not, as is seen by phrasing a weak version of such a variation:
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(A⋆c) For every ℵ1-generated ideal I of countable subsets of ω1, either

(1) there is an closed unbounded C ⊆ ω1 such that C [ℵ] ⊆ I,

or

(2) there is an uncountable subset of ω1 orthogonal to I.

To prove that (A⋆c) is inconsistent, let {Tn}∞n=0 be a decomposition of ω1 into

stationary sets. Then let IT
⇀ be the ideal of all countable subsets of ω1 which

can be covered by finitely many of the Tn’s. Clearly IT
⇀ is ℵ1-generated. It is

also obvious that both of the alternatives of (A⋆c) must fail.

3. Random Aronszajn trees

The main results of this paper are contained in this Section, where measure

algebraic names for locally countable trees are examined. An application to

square sequences is given. We conclude with a discussion on larger trees, and

we begin with a sufficiency for specialness.

Prerequisites and Notation: For a tree T = (T,≤T ), let

pred(t) = {s ∈ T : s ≤T t}

for each t ∈ T . The height of a node, i.e. the order type of (pred(t) \ {t}, <T ),

is denoted ht(t), and we write Tα for the αth level of T , i.e. Tα = {t ∈ T :

ht(t) = α}. For a set Γ of ordinals, T � Γ =
⋃

α∈Γ Tα. The height of the tree

T is the minimum ordinal α such that Tα = ∅. By a subtree of T we mean

a tree of the form (S,≤T ) where S ⊆ T . Note that this disagrees with many

authors’ usage of the term (as a downwards closed subset). For a node t ∈ T ,

we write imsucc(t) for its set of immediate successors. And T has unique

limits if nodes at limit levels are uniquely determined by their predecessors at

lower levels, i.e. if limξ→cf(δ) ht(tξ) = δ for some limit δ, then {tξ : ξ < cf(δ)}

has at most one ≤T -upper bound in the δth level of T .

An ω1-tree is a tree of height ω1 with all levels countable. Recall that an

Aronszajn tree is an ω1-tree with no cofinal branches, i.e. a branch reaching

all levels of the tree. And a tree of size ℵ1 is called special if it has a countable

decomposition into antichains.

We shall identify a tree (T,≤T ) with the collection {pred(t) : t ∈ T }. Thus,

for example, every ω1-tree is locally countable (cf. page 6), i.e. the family

{pred(t) : t ∈ T } has a countable trace on every countable subset of T .
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Lemma 3.1: Let (T,≤T ) be a tree and let S ⊆ T be a subtree. If S is orthogonal

to (T,≤T ), then (S,≤T ) is of height at most ω.

Proof: Let S be orthogonal to (T,≤T ), and suppose to the contrary that there

is a t ∈ S such that

(7) ht(S,≤T )(t) = ω.

This implies that S∩pred(t) is infinite, contradicting the fact that S ⊥ (T,≤T ).

Definition 3.2: By a Cantor tree we mean an uncountable tree (T,≤T ) of

height ω + 1 with unique limits such that T � ω is countable.

It is known (e.g. [Tod00]), and easily proved, that an equivalent formulation

is:

Lemma 3.3: A tree contains no Cantor subtrees iff it is locally countable.

Since an Aronszajn tree is a tree of size and height ω1 with neither a cofinal

branch nor a Cantor subtree, one might consider strengthening the statement

SH+ (all Aronszajn trees are special) in this direction. However, by the follow-

ing Theorem 3.4, this would be purely formal, i.e. SH+ is equivalent the the

statement: every locally countable tree of size and height ω1 either has a cofinal

branch or is special.

The following theorem is presumed to be part of the folklore.

Theorem 3.4: Let T = (T,≤T ) be a tree of size and height at most ω1. Then

the following are equivalent:

(a) T does not contain a Cantor subtree.

(b) T is a subtree of an ω1-tree U such that every cofinal branch through U

contains an uncountable branch through T .

Proof: We prove the nontrivial implication. Let T = (T,≤T ) be a tree of size

and height at most ω1, and fix a well-ordering C of its set of nodes T . Without

loss of generality, assume that T0 is countable (we could add a single minimum

element to T ). We construct a tree U = (U,≤U), such that ≤U agrees with ≤T

on T ∩ U , and a function f : U \ T → Q, level by level by recursion on α < ω1

so that

(i) f is strictly increasing on intervals of U \ T , i.e. if [x, y]U ∩ T = ∅ then f

is strictly increasing on [x, y]U , where [x, y]U = {u ∈ U : x ≤U u ≤U y},
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(ii) for all x ∈ (U � α) \ T ,

(1) {y ∈ Uα \ T : x ≤U y, [x, y]U ⊆ U \ T } 6= ∅,

(2) inf{f(y) : y ∈ Uα \ T , x ≤U y, [x, y]U ⊆ U \ T } = f(x),

(iii) U0 = T0,

(iv) Uα is countable,

(v) for all b ∈ {predU (u) ∩ T : u ∈ Uα}, if b does have a <T -upper bound in

T \ (U � α +1), then the C-minimum such <T -minimal upper bound is in

Uα+1,

(vi) {predT (t) ∩ (U � α) : t ∈ T } ⊆ {predU (x) ∩ T : x ∈ Uα \ T }.

Let us verify that this is possible. Since there is no difficulty at successor levels,

assume that α is a limit and (U � α,≤U ) and f � (U � α) \T have been defined.

For each member b of

(8) B = {b = predT (t) ∩ (U � α) : t ∈ T, sup
s∈b

htU (s) = α},

choose zb /∈ (U � α) ∪ T and extend ≤U so that predU(zb) ∩ T = b. For each

x ∈ (U � α) \ T and each rational ε > 0, by (ii) we can choose a sequence

x = yx,ε
0 ≤U yx,ε

1 ≤U · · · with [yx,ε
n , yx,ε

n+1]U ∩ T = ∅ and limn→∞ htU (yx,ε
n ) = α

such that f(yx,ε
n ) < f(x) + ε for all n. Then choose a new zx,ε, and extend ≤U

so that yx,ε
n ≤U zx,ε for all n. Letting

(9) Uα = {zb : b ∈ B} ∪ {zx,1/(n+1) : n ∈ N, x ∈ (U � α) \ T },

conditions (1) and (vi) are satisfied, and hypothesis (a) ensures that condi-

tion (iv) is not violated. And letting f(zb) be arbitrary, and f(zx,ε) = ε, condi-

tions (i) and (2) are satisfied.

It easily follows from conditions (1),(v) and (vi) that T ⊆ U , and thus T

is a subtree of U . And (i) ensures that there is no cofinal branch through U

contained in U \ T modulo a countable set.

Definition 3.5: A labeling of a set S by an ordinal θ is a bijection between S

and θ. For a tree T = (T,≤T ), a labeling {Lα : α ∈ θ} of a subset of T by θ

is called Aronszajn if there is no cofinal X ⊆ θ such that {Lα : α ∈ X} is a

chain of T .

Definition 3.6: A tree T = (T,≤T ) is said to satisfy property (T1) if

(T1) For every Aronszajn labeling {Lα : α < θ} of a subtree of T by an ordinal

θ of uncountable cofinality, there exists a closed uncountable C ⊆ θ such

that {Lα : α ∈ C} is orthogonal to T .
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Lemma 3.7: For every locally countable tree T of size and height ω1 with no

cofinal branches, if T satisfies property (T1) then T is special.

Proof: Let T = (T,≤T ) be such a tree. Then by Theorem 3.4, T is a subtree

of an ω1-tree U = (U,≤U ) with no cofinal branches. It suffices to show that U is

special. For each α < ω1, let {xn
α}

∞
n=0 enumerate Uα. By (T1) and Lemma 3.1,

for every n, there is a club Cn ⊆ ω1 such that

(10) {xn
α : α ∈ Cn} is special.

Let C =
⋂∞

n=0 Cn. For each n, write {xn
α : α ∈ C} =

⋃∞
i=0 Ani where each Ani

is an antichain. Then U � C =
⋃∞

n=0

⋃∞
i=0 Ani shows that U � C is special.

We offer a proof of the well-known fact that if any ω1-tree (T,≤T ) has a club

C ⊆ ω1 such that T � C is special, then T is special. For each α ∈ C, let

β(α) = min(C \ (α + 1)).

And let {yi
α}

∞
i=0 enumerate

⋃

{Tξ : ξ ∈ [α, β(α))}

for each α ∈ C. Write
⋃

α∈C Tα =
⋃∞

j=0 Aj where each Aj is an antichain. For

each i, j ∈ N, define

Bij = {yi
α : α ∈ C, yi

α � α ∈ Aj}.

Since C is club, {[α, β(α)) : α ∈ C} is a (disjoint) partition of ω1, and

therefore T =
⋃∞

i=0

⋃∞
j=0 Bij . Hence it remains to show that every Bij is an

antichain. For fixed i and j, take y 6= z in Bij . Find αy, αz ∈ C such that

y = yi
αy

and z = yi
αz

. Since y 6= z, αy 6= αz. And then from y � αy ∈ Aj and

z � αz ∈ Aj we conclude that y ⊥T z because Aj is an antichain.

Let R be a measure algebra via µ: R → [0, 1]. In what follows T = (T,≤T )

is a given R-name for a tree which contains no Cantor subtrees. Our goal is to

prove that T satisfies property (T1) with probability one. Hence we can assume

without loss of generality that the set T is in the ground model.

Definition 3.8: To an R-name L = {L(α) : α < θ̌} for an Aronszajn labeling of

a subset Ṡ of T , we associate an ideal IL on θ consisting of all countable Ω ⊆ θ

such that

‖{α ∈ Ω : L(α) ≤T t} is finite‖ = 1 for all t ∈ T.

Note that by going to a closed unbounded subset of θ we may assume that θ

is regular.
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Lemma 3.9: IL is a P -ideal.

Proof: Given {Ωn}∞n=0 ⊆ IL, set Ωω =
⋃∞

n=0 Ωn. By Lemma 3.3,

(11) R ‖ {{L(α) : α ∈ Ωω} ∩ pred(t) : t ∈ T } is countable.

And then by the ccc property of R we can find a countable Λ ⊆ T such that

(12) R ‖ {{L(α) : α ∈ Ωω} ∩ pred(t) : t ∈ T }

⊆ {{L(α) : α ∈ Ωω} ∩ pred(t) : t ∈ Λ}.

Let {ti}∞i=0 enumerate Λ.

For each i and n, there is a finite Γin ⊆ Ωn such that

(13) µ

(

∑

α∈Ωn\Γin

‖L(α) ≤T ti‖

)

≤
1

n2 + 1
.

Define

Ω =

∞
⋃

n=0

(

Ωn

∖

⋃

i≤n

Γin

)

.

It remains to show that Ω ∈ IL. Suppose to the contrary that there are t ∈ T

and a ∈ R+ for which a ‖ {α ∈ Ω : L(α) ≤T t} is infinite. Then by (12), for

some i and b ≤ a,

(14) b ‖ {α ∈ Ω : L(α) ≤T ti} is infinite.

Pick m large enough so that
∑∞

n=m
1

n2+1 < µ(b). Put

c =
∑

{

‖L(α) ≤T ti‖ : α ∈ Ω
∖

⋃

n<m

Ωn

}

.

Note that

(15) µ(c) ≤
∞
∑

n=m

1

n2 + 1
< µ(b).

And thus d = b − c 6= 0. However, d ‖ {α ∈ Ω : L(α) ≤T ti} ⊆
⋃

n<m Ωn

contradicting (14).

We also need to establish the following fact about IL:
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Lemma 3.10: There is no cofinal subset of θ orthogonal to IL.

The next Lemma is a reformulation of [Lav87, Lemma 2] in the language of

ultraproducts, borrowed from [Tod96], and a generalization from ℵ1 to arbitrary

uncountable regular cardinals.

Lemma 3.11 (Laver): Suppose that U is a uniform ultrafilter on θ. Then given

X ∈ θ[θ] and fα ∈ Rθ (α ∈ X), if

lim
ξ→U

µ(fα(ξ)) 6= 0 for all α ∈ X,

then there exists a ∈ R+ such that

a ‖ ∃Y ∈ X [θ]∀α, β ∈ Y ∃ξ < θ fα(ξ) · fβ(ξ) ∈ Ġ.

Proof: The proof in [Lav87] works if every occurrence of ℵ1 is replaced with θ.

For the time being we fix a subset X of θ of cardinality θ and a uniform

ultrafilter U on θ containing X . For each α ∈ X , define gα ∈ Rθ by

gα(ξ) = ‖L(α) ≤T L(ξ)‖ for all ξ < θ.

Claim 3.12: limξ→U µ(gα(ξ)) = 0 for coboundedly many α ∈ X .

Proof: Suppose that the Claim is false. Then by Laver’s Lemma there exists

an a ∈ R+ and an R-name Ẏ for a subset of X of cardinality θ such that

(16) a ‖ ∀α, β ∈ Ẏ ∃ξ gα(ξ) · gβ(ξ) ∈ Ġ.

But as T names a tree, this means that

(17) a ‖ ∀α, β ∈ Ẏ L(α) ≤T L(β) or L(β) ≤T L(α),

contradicting our assumption that with probability one {L(α)} is an Aronszajn

labeling of T .

By Claim 3.12 there is a Y ∈ U such that limξ→U µ(gα(ξ)) = 0 for all α ∈ Y .

We choose {αn}∞n=0 ⊆ Y by recursion on n so that

‖L(αn) ≤T L(αi)‖ = 0 for all i < n,(18)

µ
(

‖L(αi) ≤T L(αn)‖
)

≤ 1/(n3 + 1) for all i < n.(19)

To see that this is possible, assume that {αi}i<n has been defined. Since

(20) R ‖ | pred(t) ∩ Ṡ| < θ for all t ∈ T,
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and by the ccc property of R, there exists a set Λ ⊆ θ of cardinality less than θ

such that

(21) R ‖
⋃

i<n

pred(L(αi)) ∩ Ṡ ⊆ {L(α) : α ∈ Λ}.

And by our choice of Y , for each i < n there is a Zi ∈ U such that

(22) µ(gαi
(ξ)) ≤ 1/(n3 + 1) for all ξ ∈ Zi.

Then any αn ∈ Y ∩ Z0 ∩ · · · ∩ Zn−1 \ Λ will work.

Claim 3.13: {αn : n ∈ N} ∈ IL.

Proof: Let a ∈ R+ be given. Find m large enough so that

(23)

∞
∑

n=m

n − m

n3 + 1
< µ(a).

Now observe that the probability that {L(αn) : n ≥ m} is not an antichain is

given by

(24) b =
∞
∑

n=m

∞
∑

i=m

i6=n

‖L(αi) ≤T L(αn)‖.

But

µ(b) ≤
∞
∑

n=m

∞
∑

i=m

i6=n

µ
(

‖L(αi) ≤T L(αn)‖
)

=

∞
∑

n=m

n−1
∑

i=m

µ
(

‖L(αi) ≤T L(αn)‖
)

by (18)

≤
∞
∑

n=m

n − m

n3 + 1
< µ(a) by (19).

Thus c = a − b 6= 0 and furthermore c ‖ {L(αn) : n ≥ m} is an antichain. We

have now proved that {L(αn) : n ∈ N} is the union of an antichain and a finite

set with probability one. This suffices.

We have now completed a proof of Lemma 3.10.

Theorem 3.14: For a cardinal κ, (⋆c) for θ ≤ κ implies that every R-name

for a tree of size κ containing no Cantor subtrees satisfies property (T1) with

probability one.

Proof: Suppose that T = (T,≤T ) is a given R-name for a tree of size κ which

contains no Cantor subtrees. Let L be a given R-name for an Aronszajn labeling
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of a subset of T by some uncountable ordinal θ. We need only concern ourselves

with regular θ, in which case θ ≤ κ. Then Lemma 3.10 implies that the second

alternative of (⋆c) must fail, and therefore there is a closed uncountable C ⊆ θ

such that C [ℵ] ⊆ IL. However, from the ccc property of R it follows that

(25) ‖{L(α) : α ∈ C} is orthogonal to T ‖ = 1,

proving that T satisfies property (T1) with probability one.

Corollary 3.15: (⋆c) restricted to ω1 implies RSH+.

Proof: By Lemma 3.7 and Theorem 3.14.

Corollary 3.16: Conjecture 1 implies that RSH+ is consistent with CH.

Theorem 3.17: (∗) restricted to ω1 implies RSH.

Proof: Suppose that T = (T,≤T ) is an R-name for Aronszajn tree on ω1. We

consider the ideal IT (i.e. the labeling is the identity map), and by a similar

argument to the proof of Theorem 3.14 we obtain an uncountable X ⊆ ω1 such

that X [ℵ] ⊆ IT , and thus is orthogonal to the tree with probability one. Then

by Lemma 3.1, (X,≤T ) is special with probability one, and in particular, T has

an uncountable antichain with probability one.

Corollary 3.18: RSH is consistent with CH.

Proof: Theorems 2.1 and 3.17.

3.1. Square sequences. Recall that for a given ordinal θ (typically regular

and uncountable), a square sequence on θ is a sequence of the form Cα

(α < θ) where

(a) Cα is a closed unbounded subset of α when α is a limit, and Cα+1 = {α},

(b) Cα = Cβ ∩ α whenever α is a limit point of Cβ ,

(c) for every closed unbounded C ⊆ θ, there is limit point α of C such that

C ∩ α 6= Cα.

The statement there exists a square sequence on θ is denoted by �(θ). In

[Tod84a], a partial square sequence on θ is considered, that is a set Γ ⊆ θ of

limit ordinals containing {α < θ : cf(α) = ℵ1} and a sequence 〈Cα : α ∈ Γ〉

satisfying (a)–(c) for every α ∈ Γ, and also

(d) α ∈ Γ whenever α is a limit point of Cβ .
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For an infinite cardinal κ, a �κ-sequence is sequence 〈Cα : α < κ+〉 satisfy-

ing (a) and (b), and with condition (c) strengthened to

(e) otp(Cα) ≤ κ for all α < κ+.

The statement there exists a �κ-sequence is denoted by �κ. Thus �κ

implies �(κ+).

It is shown in [Tod84a] that:

Theorem 3.19 (Todorčević): PFA implies that there is no partial square se-

quence on any ordinal of cofinality strictly greater than ℵ1. In particular, PFA

implies ¬�κ for every uncountable cardinal κ.

There is a natural correspondence between a (partial) square sequence on θ

and a tree ordering <2 on Γ given by

(iii) α <2 β iff α is a limit point of Cβ

for all α, β ∈ Γ. Observe that condition (c) can be reformulated as

(f) the tree (Γ,≤2) has no branch which is cofinal as a subset of θ.

To see this, suppose that B ⊆ Γ is a cofinal set which is a branch. Notice that

B consists entirely of limit ordinals. Define a club subset of θ by

C =
⋃

{Cβ : β ∈ B}.

Fix a limit α ∈ C. Set β̄ = min(B\(α+1)). Since α ∈ Cγ for some γ ∈ B\(α+1),

it follows from (b) that α ∈ Cβ̄ , and then it follows from (b) that

(26) Cβ ∩ α = Cα for all β ∈ B \ (α + 1).

Now since Cβ ∩ α = Cβ = Cβ̄ ∩ β ⊆ Cα for all β ∈ B ∩ (α + 1), we have

C ∩ α = Cα. Therefore C witnesses that condition (c) fails. Conversely, if

C ⊆ θ is a club witnessing the failure of (c), then the set of limit points of C is

a branch in (Γ,≤2).

Lemma 3.20: (Γ,≤2) contains no Cantor subtrees.

Proof: By Lemma 3.3, we need to show that {pred(β) : β ∈ Γ} is locally

countable. Fix a countably infinite Ω ⊆ θ. We may assume that Ω consists

entirely of limit ordinals. Then by conditions (a) and (b),

(27) {Ω ∩ pred(β) : β ∈ Γ} = {Ω ∩ Cα : α ∈ Ω},

where Ω denotes the closure of Ω . This concludes the proof.

Now we can see the influence of (⋆c) on random square sequences—and in

particular on square sequences:
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Theorem 3.21: (⋆c) restricted to θ ≤ κ implies that there is no partial square

sequence on any ordinal θ ≤ κ of cofinality strictly greater than ℵ1, in any

extension by a measure algebra.

Proof: Suppose towards a contradiction that Ċα (α ∈ Γ̇) is an R-name

for a partial square sequence on θ. By Lemma 3.20, with probability one

(Γ̇,≤2) contains no Cantor subtrees. Therefore, by Theorem 3.14, (Γ̇,≤2) sat-

isfies property (T1) with probability one. Let γ̇α (α < θ) be an R-name for

the strictly increasing enumeration of Γ̇. Then condition (f) says that {γ̇α} is

an Aronszajn labeling with probability one. Thus there is a closed uncountable

C ⊆ θ such that {γ̇α : α ∈ C} is orthogonal to (Γ̇,≤2) with probability one.

Let D be the initial segment of C of length ω1. Then there is an a ∈ R+ and a

β < θ such that

(28) a ‖ β = sup{γ̇α : α ∈ D}.

Since a ‖ β ∈ Γ̇, it follows from (d) that

(29) a ‖ Ċβ ∩ {γ̇α : α ∈ D} is a closed unbounded subset of β,

and in particular a forces that {γ̇α : α ∈ D} is not orthogonal to (Γ̇,≤2). This

contradiction concludes the proof.

Remark 3.22: This together with Theorem 4.7 gives a proof of Theorem 3.19.

3.2. Larger trees. We consider trees which are large in the sense that they

contain a Cantor subtree. We have just seen that (⋆c) implies that every locally

countable tree of size ℵ1 either has an uncountable branch, or can be decomposed

into countably many antichains. Recall that MAℵ1
implies that every tree of

size ℵ1 either has an uncountable branch or a countable decomposition into

antichains (see [BMR70]). On the other hand, under CH, there exists a tree of

size ℵ1 which neither has an uncountable branch, nor can be decomposed into

countably many antichains; for example, the tree (σQ ,⊑), where σQ is the set

of all well-ordered subsets of (Q,≤) and ‘⊑’ denotes the end-extension ordering,

does not satisfy either of these two alternatives (see [Tod84b, §9]).

Furthermore, while forcing with a measure algebra R of weight at least ℵ2

violates CH, in V R, the tree (σQ,⊑)V has size ℵ1 yet it fails to satisfy either

of the two alternatives mentioned above. This fact is a consequence of Lemma

3.24 below.



142 J. HIRSCHORN Isr. J. Math.

Definition 3.23: A poset (P ,≤) is said to satisfy the σ-finite chain condition

if there is a countable decomposition of P into sets which contain no infinite

antichains of P .

Every measure algebra (R, µ) has the σ-finite chain condition because we can

write R+ =
⋃∞

n=0 Rn where Rn = {a ∈ R+ : µ(a) ≥ 1/(n + 1)}.

Lemma 3.24 (Todorčević): Posets which satisfy the σ-finite chain condition

do not specialize nonspecial trees, nor do they add uncountable chains to tree

orderings which do not already have them.

Proof: In [Tod85, Lemma 8] it is shown that no poset with the σ-finite chain

condition specializes a nonspecial tree. It is also well-known that no poset sat-

isfying property K adds an uncountable branch to a tree ordering (see [KT79]).

And it follows from the Dushnik–Miller relation ω1 → (ω1, ω) that every poset

with the σ-finite chain condition has the property K.

4. The consistency of (⋆c)

Although we are primarily interested in the consistency of (⋆c) with CH, we

take this opportunity to show that it is a consequence of PFA. Given a P -ideal

I on some ordinal θ of uncountable cofinality, for which there is no stationary

subset of θ orthogonal to I, we need a proper poset PI that forces a closed

uncountable subset C of θ such that C [ℵ] ⊆ I. Our poset is based on the

corresponding posets in [AT97] and [Tod00]. The essential difference is that our

working condition is now closed.

Definition 4.1: For an ideal I on θ, let P (= PI) be the poset consisting of all

pairs p = (xp,Xp) where

(a) xp is a countable closed subset of θ,

(b) Xp is a countable set of cofinal subsets of I, called promises, where I is

ordered by ⊆∗,

ordered by (xq,Xq) ≤ (xp,Xp) iff

(c) xq ⊒ xp,

(d) Xq ⊇ Xp,

(e) for every X ∈ Xp, the set {Ω ∈ X : xq \ xp ⊆ Ω} is cofinal in I and

belongs to Xq.

Lemma 4.2: If I is a P -ideal then the ideal of noncofinal subsets of I is a

σ-ideal.



Vol. 157, 2007 RANDOM TREES UNDER CH 143

Proof: Let X be a countable collection of noncofinal subsets of I. Then for

each X ∈ X , there exists ΩX ∈ I such that

(30) ΩX \ Ω is infinite for all Ω ∈ X.

Since I is a P -ideal, there exists Ωω ∈ I such that ΩX ⊆∗ Ωω for all X ∈ X .

Then Ωω witnesses that
⋃

X is not cofinal in I.

In following Lemmas 4.3, 4.4, 4.5 and 4.6, we are assuming that I is a P -ideal

on some ordinal θ of uncountable cofinality with no stationary orthogonal set,

and κ is always some sufficiently large regular cardinal, i.e. κ ≥ (2|θ|
ℵ

)+.

Lemma 4.3: For every countable M ≺ Hκ containing I, for every cofinal X ⊆ I

in M ,

{Ω ∈ X : sup(θ ∩ M) ∈ Ω} is cofinal in I.

Proof: Let A be the set of all α < θ such that

(31) Yα = {Ω ∈ X : α ∈ Ω} is not cofinal in I.

Note that A is orthogonal to I, because for every countably infinite Λ ⊆ A,

(32) {Ω ∈ X : Λ ⊆∗ Ω} ⊆
⋃

α∈Λ

Yα,

which by Lemma 4.2 is not cofinal in I; and this implies that Λ /∈ I. By our

assumption on I, A is not stationary, and therefore sup(θ∩M) /∈ A, as A ∈ M .

Lemma 4.4: For every p ∈ P and η < θ, there exists q ≤ p such that

min(xq \ xp) ≥ η.

Proof: Let p and η be given. Pick a countable M ≺ Hκ containing p, η and I.

Put δ = sup(θ ∩ M). By Lemma 4.3,

(33) {Ω ∈ X : δ ∈ Ω} is cofinal in I

for every X ∈ Xp. Therefore there is a q extending p with xq = xp ∪ {δ}.

Lemma 4.5: For a countable M ≺ Hκ containing I, suppose Ω is a set such

that Λ ⊆∗ Ω for all Λ ∈ I ∩ M . Then for every p0 ∈ P ∩ M and every dense

D ⊆ P in M , there is an extension q ≤ p0 in D ∩ M such that xq \ xp0
⊆ Ω .

Proof: Suppose not. Let J be the set of all Λ ∈ I for which there exists

ΩΛ ∈ I such that Λ ⊆∗ ΩΛ and there is no q ≤ p0 in D such that xq \xp0
⊆ ΩΛ.
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Notice that for every Λ ∈ I ∩ M , ΩΛ = Λ ∩ Ω ∈ I ∩ M and witnesses that

M |= Λ ∈ J . Therefore, as J ∈ M , J = I. Since X = {ΩΛ : Λ ∈ I} is cofinal

in I, we can define an extension p1 of p0 by

p1 = (xp0
,Xp0

∪ {X}).

Then we can find p2 ≤ p1 in D. But

(34) X1 = {Ω ∈ X : xp2
\ xp0

⊆ Ω}

is cofinal in I, and in particular nonempty. Take Ω ∈ X1. Then Ω = ΩΛ for

some Λ ∈ I, and thus xp2
\ xp0

⊆ ΩΛ contrary to the fact that ΩΛ witnesses

that Λ ∈ J .

A poset Q is completely proper if for every countable M ≺ Hλ containing

Q for λ a sufficiently large regular cardinal, every p ∈ P ∩M has a completely

(M,Q)-generic extension q, i.e. for all dense D ⊆ Q in M , q extends some

member of D ∩ M . Note that a poset is completely proper iff it is proper and

does not add reals.

Lemma 4.6: P is completely proper.

Proof: Let M ≺ Hκ be a countable elementary submodel containing P , and let

{Dn}∞n=0 enumerate all of the dense subsets of P in M . Fix a set ΩM ∈ I such

that Ω ⊆∗ ΩM for all Ω ∈ I ∩ M . Given p0 ∈ P ∩ M , we choose a decreasing

sequence of conditions p0 ≥ p1 ≥ · · · such that pn+1 ∈ Dn ∩M for all n, and so

that when we let y be the union of the xpn
’s

(35) Z(X, n) = {Ω ∈ X : (y ∪ {sup(θ ∩ M)}) \ xpn
⊆ Ω} is cofinal in I

for all n, for all X ∈ Xpn
.

If we succeed in doing this, we will let

Xpω
=

∞
⋃

n=0

(Xpn
∪ {Z(X, n) : X ∈ Xpn

}),

and then put

pω = (y ∪ {sup(θ ∩ M)},Xpω
).

Since, by Lemma 4.4, y∪{sup(θ∩M)} will be closed in θ, pω will be a member

of P . And it will follow from (35) that pω ≤ pn for all n, completing the proof.

In order to do this we shall need a bookkeeping device, say mappings

ϕ0, ϕ1: ω → ω where ϕ0(n) ≤ n for all n, and n 7→ (ϕ0(n), ϕ1(n)) defines a
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surjection. For each n, having chosen pn, let {Xni}∞i=0 be an enumeration of

Xpn
. The idea is that the promise Xmi is taken care of when choosing pn+1 where

(ϕ0(n), ϕ1(n)) = (m, i).

Given n, assume that pn has been defined. Let (m, i) = (ϕ0(n), ϕ1(n)). Put

Y = {Ω ∈ Xmi : xpn
\ xpm

⊆ Ω},

and note that Y is cofinal in I because pn ≤ pm. Then by Lemma 4.3 (note

that I ∈ M),

Y0 = {Ω ∈ Y : sup(θ ∩ M) ∈ Ω}

is cofinal in I. Since {Ω ∈ Y0 : ΩM ⊆∗ Ω} is cofinal in I, by Lemma 4.2 there

is a finite Fn ⊆ ΩM such that

(36) {Ω ∈ Y0 : ΩM \ Fn ⊆ Ω} is cofinal in I.

Now Z(Xmi, m) will be cofinal in I as long as

(37) xpj+1
\ xpj

⊆ ΩM \ Fn for all j ≥ n.

To ensure (37) it suffices to find pn+1 ≤ pn such that

(38) pn+1 ∈ Dn ∩ M,

(39) xpn+1
\ xpn

⊆ ΩM \ (F0 ∪ · · · ∪ Fn).

And for this we have Lemma 4.5.

Theorem 4.7: PFA implies (⋆c).

Proof: This follows immediately from the fact that

(40) Dξ = {p ∈ P : otp(xp) > ξ}

is dense for every countable ordinal ξ. This in turn is so because if P ∈ M ≺ Hκ

then for any (M,P)-generic filter G,

(41) M [G] |=
⋃

p∈G

xp is club in θ.
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5. Random Kurepa trees

Definition 5.1: A tree (T,≤T ) is called essentially special if there is a map

f : T → ω such that

s ≤T t, u and f(s) = f(t) = f(u)

implies

t and u are ≤T -comparable

for all s, t, u ∈ T . Note that (T,≤T ) is essentially special iff it can be decomposed

into countably many antichains of ≤T -chains; and that on a tree of size ℵ1 with

no branches of length ω1, essential specialness and specialness coincide.

The notion of essential specialness is due to Baumgartner [Bau83] who used it,

with the following Lemma (for the case of ω1-trees), for the purpose of proving

that PFA implies the nonexistence of Kurepa trees (see [Dev83]).

Lemma 5.2 (Baumgartner): If (T,≤T ) is an essentially special tree with height

of uncountable cofinality, then (T,≤T ) has at most |T | cofinal branches.

Proof: Suppose that f : T → ω is an essentially specializing map. For each

cofinal branch B of (T,≤T ) there is an tB ∈ B such that

(42) {s ∈ B : f(s) = f(tB)} is cofinal in B.

Now for any two cofinal branches B and C, note that if tB = tC then B = C.

The following Theorem which randomizes the corresponding Theorem of

Baumgartner in [Dev83] appears in some unpublished notes of Baumgartner

[Bau]. We will use the results of this section to provide a proof.

Theorem 5.3 (Baumgartner): PFA implies that every tree of size and height

ω1 in every forcing extension by a measure algebra is essentially special. In par-

ticular, PFA implies that every tree of size and height ω1 has at most ℵ1 cofinal

branches (and in particular there are no Kurepa trees) in any forcing extension

by a measure algebra.

In this Section we discuss the statement that all ω1-trees are essentially spe-

cial in any forcing extension by a measure algebra (denoted ¬RKH− in the

Introduction). Since this does not appear to be a consequence of (⋆c), we make

a separate conjecture.
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Conjecture 2: ¬RKH− is consistent with CH relative to the existence of an

inaccessible cardinal.

All of the necessary ingredients for a proof are provided, with the exception of

the iteration theory.

As was the case with SH+, the statement that every ω1-tree is essentially

special (denoted ¬KH− in the Introduction), has a purely formal strengthening.

I.e. by Theorem 3.4, ¬KH− is equivalent to: all locally countable trees of size

and height ω1 are essentially special. One should note that this is the best

approximation to Theorem 5.3 which is compatible with CH, since, for example,

the complete binary tree of height ω1 has cardinality ℵ1 under CH.

Lemma 5.4: If T = (T,≤) is a tree of size and height ω1 which has at most ℵ1

cofinal branches, then there is a subtree T ∗ of T with the property that

(a) T ∗ has no branches of length ω1,

(b) T is essentially special iff T ∗ is a countable union of antichains,

(c) if T ∗ is a countable union of antichains in some forcing extension, then T

is essentially special in that extension.

Proof: Let T = (T,≤) be as in the hypothesis of the Lemma, and let U ⊆ T be

the set of all nodes which are not in any cofinal branch of T . Let {bα : α < λ}

(λ ≤ ω1) be a 1–1 enumeration of all the cofinal branches of T . For each α < λ,

define xα ∈ bα as the ≤T -least element of

bα

∖

⋃

ξ<α

bξ.

Define a subtree T ∗ = (T ∗,≤T ) by

T ∗ = {xα : α < λ} ∪ U.

For each α, let cα = {y ∈ bα : xα ≤T y}. If in some forcing extension we

can write T ∗ =
⋃∞

n=0 An where each An is an antichain, then observe that

Cn = {cα : xα ∈ An} is an antichain of chains for all n, and that {Cn : n < ω}

is a decomposition of T \ U , and that U is essentially special, proving (c). The

other implication in (b) follows from the fact that T ∗ ∩ C is countable for any

chain C of T .

Lemma 5.5: Suppose that T = (T,≤T ) is an R-name for an ω1-tree with at

most ℵ1 cofinal branches for some measure algebra R. Then there is an iteration

Q(T ), of completely proper posets, forcing that

‖T is essentially special‖ = 1.
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Proof: Given T , let T ∗ be an R-name for the tree from Lemma 5.4. Put

(43) a = ‖ ht(T ∗) = ω1‖.

By Lemma 5.4 (b), −a ≤ ‖T is essentially special‖. Hence, by going to the

subalgebra Ra = {b ∈ R : b ≤ a} we can assume that T ∗ is of height ω1 with

probability one. Since T contains no Cantor subtrees, neither does T ∗, and thus

by Theorem 3.4, with probability one, T ∗ is a subtree of an ω1-tree U = (U,≤U )

with no cofinal branches. For each α < ω1, let {ẋn
α}

∞
n=0 be an R-name for an

enumeration of Uα. For each n, let Ln be the R-name for the labeling of a

subtree of U by ω1 given by ‖Ln(α) = ẋn
α‖ = 1. From the proof of Lemma 3.7,

to specialize T ∗ it suffices to force for each n a closed unbounded Cn ⊆ ω1 such

that ‖{Ln(α) : α ∈ Cn} ∈ U⊥‖ = 1. And this is precisely what the poset PI

does, where I = ILn
is the P -ideal from Definition 3.8 which has no stationary

subset of ω1 orthogonal to it (Lemma 3.10). Thus the poset

(44) Q(T ) =
∏

n<ω

PILn
,

specializes T ∗, and hence by Lemma 5.4 (c) essentially specializes T . Further-

more, by Lemma 4.6 each of the posets in the product is completely proper.

Remark 5.6: The posets PILn
are also complete for some simple completeness

system, cf. [She82] (we did not prove this here). Thus Q(T ) is in fact completely

proper, because iterations of length shorter than ω2 of such posets do not add

reals.

It is a well-known theorem of Silver ([Sil71]) that posets which are σ-closed do

not add new cofinal branches to ω1-trees. In [Dev83] the (necessary) additional

axiom that CH fails, is used to generalize the conclusion of Silver’s Theorem to

all trees of size and height ω1. In [Bau] this is generalized further as follows:

Lemma 5.7 (Baumgartner): 
 > ℵ1 implies that for any measure algebra R,

no σ-closed poset adds an R-name for a new uncountable branch of an R-name

for a tree of size and height ω1.

Proof: See [Bau] and also Remark 5.10.

We modify the proof in [Bau] to obtain a strengthening of Silver’s result.
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Lemma 5.8: If Q is a poset with the ccc and Ṫ is a Q-name for an ω1-tree,

then no σ-closed poset adds a Q-name for a new cofinal branch of Ṫ .

Proof: Suppose, without loss of generality, that we are given a Boolean algebra

B with the ccc and a B-name Ṫ = (Ṫ ,≤Ṫ ) for an ω1-tree. We may assume that

Ṫ names a tree on ω1, and moreover we may assume that

(45) B ‖ Ṫα = [ω · α, ω · α + ω) for all α < ω1.

Define a B-name Ḃ by

B ‖ Ḃ = {y ⊆ ω1 : y is a cofinal branch of Ṫ }.

For a Q-name ẏ for a subset of ω1, we define fα(ẏ) ∈ Bω (α < ω1) by

fα(ẏ)(n) = ‖ω · α + n ∈ ẏ‖B for all n < ω.

Let P be a given σ-closed poset, and note that

(46) P ‖ B has the ccc.

Now suppose towards a contradiction that the conclusion of the Lemma fails.

Then there exists (p0, b0) ∈ P × B and a P-name ˙̇x for a B-name for a cofinal

branch of Ṫ where

(47) (p0, b0) ‖ ˙̇x /∈ ˇ̇B.

We assume for notational convenience that b0 = 1.

Sublemma 5.9: For every q ≤ p0, there are coboundedly many α < ω1 for

which there exist qg, qh ≤ q and g, h ∈ Bω such that

(1)
∑∞

n=0 g(n) · h(n) = 0,

(2) qg ‖ fα( ˙̇x) = g,

(3) qh ‖ fα( ˙̇x) = h.

Proof: Since P is σ-closed, we can recursively choose sequences qα ∈ P

(α < ω1) and gα ∈ Bω (α < ω1) such that

(48) q0 = q,

(49) qα ≤ qξ for all ξ < α,

(50) qα ‖ fα( ˙̇x) = gα.

Define a B-name Γ̇ for a subset of ω1 by

‖ω · α + n ∈ Γ̇‖B = gα(n) for all α, n.
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Observe that

(51) ‖Γ̇ is a cofinal branch‖B = 1.

For if there were c ∈ B and α < ω1 such that c ‖ |Γ̇ ∩ Ṫα| 6= 1, then we would

have (qα, c) ‖ | ˙̇x ∩ Ṫα| 6= 1. Now by (47) and (51),

(52) p0 ‖ ‖ ˙̇x 6= Γ̇‖B = 1.

Hence, as p0 ‖ B has the ccc, p0 ‖ ∃ξ < ω1 ‖∀α ≥ ξ ˙̇x ∩ Γ̇ ∩ Ṫα = ∅‖B = 1.

And hence there is an r ≤ q and a ξ < ω1 such that

(53) r ‖ ‖ ˙̇x ∩ Γ̇ ∩ Ṫα = ∅‖B = 1 for all α ≥ ξ.

Given α ≥ ξ, find s ≤ r and h ∈ Bω such that

(54) s ‖ fα( ˙̇x) = h.

By (50), (53) and (54), gα(n) · h(n) = 0 for all n < ω, giving the conclusion of

the Sublemma.

By applying the Sublemma recursively we can obtain ps ∈ P (s ∈ 2<N),

gs ∈ Bω (s ∈ 2<N) and αn < ω1 (n < ω) such that

(55)
∑∞

n=0 gsa0(n) · gsa1(n) = 0,

(56) ps ‖ fα|s|
( ˙̇x) = gs,

(57) psa0, psa1 ≤ ps.

Put α = supn<ω αn, and for each σ ∈ 2ω choose pσ ∈ P and gσ ∈ Bω such that

(58) pσ ≤ pσ�n for all n,

(59) pσ ‖ fα( ˙̇x) = gσ.

It is easily verified that

(60) σ 6= τ implies

∞
∑

n=0

gσ(n) · gτ (n) = 0.

Since
∑∞

n=0 gσ(n) = 1 for all σ, there exists an n̄ such that

X = {σ ∈ 2ω : gσ(n̄) 6= 0}

is uncountable. But then (60) implies that {gσ(n̄) : σ ∈ X} is an uncountable

antichain of B, contradicting the fact that B has the ccc.
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Remark 5.10: Suppose now that Ṫ is a B-name for a tree of size and height ω1.

While the enumeration in (45) is no longer possible, note that the proof of

Sublemma 5.9 did not rely on the fact that Ṫ had countable levels. Thus (as is

done in [Bau]) we can represent the intersection of a branch with the αth level

of Ṫ by a member of Bω1 with countable support, and use the Sublemma to

obtain a complete binary tree of height ω + 1 in P as above. Then, assuming
 > ℵ1, we obtain a contradiction with the fact that Ṫ names a tree of size

ℵ1. This gives a proof of the generalization of Lemma 5.7 with an arbitrary ccc

poset in place of a measure algebra. insert here:

Notation: for a cardinal κ and an ordinal θ, we let C(κ, θ) denote the poset for

collapsing θ to an ordinal of cardinality κ by partial functions of cardinality < κ

Proof of Theorem 5.3: Assume PFA and let T be an R-name for a tree of size

and height ω1 where R is some measure algebra. Since PFA implies that 
 = ℵ2

and 2ℵ1 = ℵ2 and by Lemma 5.7,

(61) C(ℵ1,ℵ2) ‖ ‖T has at most ℵ1 cofinal branches‖ = 1

(see also the following discussion). Let T ∗ be the C(ℵ1,ℵ2)⋆R-name for the tree

obtained from applying Lemma 5.4 in the extension by C(ℵ1,ℵ2). In [Lav87]

it shown that for every R-name S for a tree with no branches of length ω1,

there is a ccc poset L(S) which specializes it. Thus an application of PFA to a

suitable family of ℵ1 dense subsets of C(ℵ1,ℵ2) ⋆ L̇(T ∗) gives an R-name for an

essentially specializing map on T .

Let us see why Conjecture 2 now follows provided we can iterate our forcings

without adding reals at limit stages. Suppose that T is an R-name for an

ω1-tree. Since an ω1-tree is of cardinality ℵ1, any R-name for an ω1-tree is

completely determined by a subalgebra of R of weight ℵ1. In other words, we

may assume that R = Rω1
(the measure algebra of 2ω1). As we are working

under CH, it follows that there are at most 2ℵ1 many R-names for branches

of T . Thus C(ℵ1, 2
ℵ1) forces that there are at most ℵ1 many old Ř-names for

branches of T , and hence by Lemma 5.8 it in fact forces that there are at most

ℵ1 many Ř-names for these branches. And since R is absolute for σ-closed

forcings, e.g. C(ℵ1, 2
ℵ1) forces R = Ř is a measure algebra, after collapsing the

hypothesis of Lemma 5.5 is satisfied. Thus the poset C(ℵ1, 2
ℵ1) ⋆ Q̇(T ) forces

that T is essentially special with probability one.
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